
NPS EC-93-014

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A270 905

*?R A D* Y)T

ACOUSTIC PROPAGATION
MODELING

USING MATLAB

John P. Powers

1 September 1993

Approved for public release; distribution unlimited.

Prepared for:
Naval Postgraduate School

Monterey CA 93943

9 3 1 5 "Z 38 93-24693



NAVAL POSTGRADUATE SCHOOL
Monterey, CA

Rear Admiral T.A. Mercer Dr. Harrison Shull
Superintendent Provost

Reproduction of all or part of this report is authorized.

This report was prepared as part of a research project entitled "Transient-wave Acoustical
Imaging" sponsored by the Direct Funded Research Program of the Naval Postgraduate
School, Monterey, California.

This report was prepared by:

P. Powers
Professor
Department of Electrical and

Computer Engineering

Reviewed by: Released y:

Michael A. Morgan Paul J. to
Chairman, Department of Electrical Dean of Research
and Computer Engineering

ii



Form Aparoved

REPORT DOCUMENTATION PAGE 1 Fo o. 0 ol,.,

%gs., NWtK A b~W' o t @o't.@n 01 .neon'" h owtee m o.wo'4 t go&.""aoI %~ ,Wf tt.. g thq t," t-W* , Wa. "t-g e..•t L doWto cv
S416Wq.w OW S~A 001wth -9lSol ' 0001.d'.e. tbo'q (0I.(i.. of Udo'.,oa 0'4 coWmmts t0.0- - bwsh ,t,-att.a to. O, o1wn MOtI M1

Oatoq~wv.$~e 204.*'liqi.VA22202-43. andto %be 0##cejf~d q94o'.et~e *Ad6.aet. Vawe'-ok Aedwg1enPr.o,KtO04i4IS8I. .,a,..qto. DC 2010)

1. AGENCY USE ONLY (Le4ve blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I September 1993 Interim Report 1 October1991 - I July 1993

4L TITLE AND SUBTITLE S. FUNDING NUMBERS

Acoustic Propagation Modeling Usinig MATLAB

6. AUTHORS)

John P. Powers

7. PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES) L. PERFORMING ORGANIZATION

REPORT NUMBER

Naval Postgraduate School
Monterey CA 93943-5000 NPSEC-93-014

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGJ MONITORING

Naval Postgraduate School AGENCY REPORT NUMBER

Reasearch Office (Code 08)
Naval Postgraduate School
Monterey CA 93943-5000

11. SUPPLEMENTARY NOTES

The views expressed in this report are those of the author and do not reflect the official policy or position
of the Department of Defense oi the United States Government.

"12s. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release;
distribution unlimited.

13. ABSTRACT (Mamxmum 200 words)

This report presents a computational technique for the rapid, efficient calculation of fields from transient
acoustic sources in linear, isotropic media. The source velocity is separable in space and time. The method
uses a spatial impulse response method based on linear systems concepts to express the output in terms of
the Greens function of propagation equation and the boundary conditions. The output is expressed as the
inverse spatial transform of the product of the transform of the spatial excitation and a time-varying spatial
filter that represents propagation. The calculation technique has been implemented in MATLAB and sample
cases are presented for the circular and square piston, as well as a Gaussian- and Bessel-weighted spatial
excitation. Code for the MATLAB implementation is provided.

14. SUBJECT TERMS 15. NUMBER OF PAGES
64

Acoustic propagation, transient waves, transfer function, linear systems theory 16. PRICE CODE

17. SECURITY CLASSIFICATION 13. SECURITY CLASSIFICATION 1. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR

NSN 7540-01-2110-5500 Standard Form 298 (Rev 2-89)
fteCSi4w OV ASSIJ S1i V'S-I



iv



Abstract

This report presents a computational technique for the rapid, efficient calculation of
fields from transient acoustic sources in linear, isotropic media. The source velocity is
separable in space and time. The method uses a spatial impulse response method based on

linear systems concepts to express the output in terms of the Green's function of propagation
equation and the boundary zonditions. The output is expressed as the inverse spatial
transform of the product of the transform of the spatial excitation and a time-varying
spatial filter that represents propagation. The calculation technique has been implemented
in MATLAB and sample cases are presented for the circular and square piston, as well as a
Gaussian- and Bessel-weighted spatial excitation. Code for the MATLAB implementation
is provided.

Accesion ForNTIS CRA&M
DTIC TAB
urarnouiced0

4 90-114 By... . ...........

Av~iiabi~iiy Codes
AVii a:id Ior

Dist special

v9



Contents

1 Introduction 1
1.1 Introduction ...........................................
1.2 Report Overview ......................................... 2

2 Problem Description 3
2.1 G eom etry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Linear Systems Approach ................................... 3
2.3 Mathematical Devclopment for Acoustic Propagation ................. 6
2.4 Software Tools ......... .................................. 8

2.4.1 MATLAB Overview ........ ........................... 8
2.4.2 AXUM Overview ..................................... 9
2.4.3 Spyglass Software Overview ............................. 11

3 MATLAB Modeling of Equations 12
3.1 Acoustic Filter Module ...................................... 12
3.2 Acoustic Propagation Module ................................. 15
3.3 Program Summary ........................................ 16

4 Numerical Simulations 18
4.1 Defining Parameters ........ ............................... 18
4.2 Program Verification ....................................... 20

4.2.1 Format of Results ........ ............................ 20
4.2.2 Table Impulse Excitation ....... ........................ 21
4.2.3 Circle Impulse Excitation ............................... 26

4.3 Other Input Excitations ..................................... 26
4.3.1 Gaussian Distributed Excitation ....... .................... 26
4.3.2 Bessel Excitation ..................................... 29

5 Summary 32
5.1 Acknowledgements ........................................ 33

A Source Code for AC__FIL.M 34

vi



B Examples of the Time-varying Propagation Bessel Filters 37

C Source Code for AC-PROP.M 40

D Source Code for Input excitations 47

E Examples of Dicer Representations of Output Data 53

Vii



viii



List of Figures

2.1 Source-to-receiver geometry ................................. 4
2.2 Block diagram of (a) the total impulse response h(z,y,t)), (b) the spatial

impulse response p(x, y, z, t) in the space-time domain, (c) the spatial impulse
response P(f, fl, t) in the spatial frequency-time domain, and (d) the general
solution O(x,y,z,it) ........ ................................ 5

2.3 Illustration of the center versus corner geometry. ................... 10

3.1 Offset geometry of base array matrix ....... ...................... 13
3.2 Construction of rho shown graphically ............................ 15

4.1 Table spatial input and time-space output for w = 23 samples (w = 5.5 cii)
at z = 10 cm ............................................ 22

4.2 Table spatial input and time-space output for w = 31 samples (w = 7.5 cli)
at z = 10 cm ............................................ 23

4.3 Table output for d = 31 samples. Dicer representation ................. 24
4.4 Table output for d = 31 samples. Alternative Dicer representation ...... .. 25
4.5 Circle input excitation and output for d = 31 samples ................. 27
4.6 Gaussida distributed inpuL and output -ur a -= 5 ..................... 28
4.7 Bessel-profile input and output for a = 0.25 ........................ 30

B.1 Propagation filter at time slices 1, 2, and 5 ........................ 38
B.2 Propagation filter at time slices 10, 20, and 30 ..................... 39

E.1 Table output for d = 23 samples. Dicer representation ................. 54
E.2 Table output for d = 23 samples. Alternative Dicer representation ...... .. 55
E.3 Circle output for d = 23 samples. Dicer representation ............. ... 56
E.4 Circle output for d = 23 samples. Alternative Dicer representation ....... 57
E.5 Circle output for d = 31 samples. Dicer representation ................ 58
E.6 Circle output for d = 31 samples. Alternative Dicer representation ...... . 59

ix



e

x



List of Tables

4.1 Summary of the defining parameters in ACFIL ...................... 19
4.2 Summary of the defining parameters used in ACYPROP ................ 20
4.3 Values of defining parameters for the Table input function used for program

verification ......... ..................................... 21
4.4 Defining parameters for Gaussian excitation case ..................... 29
4.5 Defining parameters for Bessel excitation case ...................... 29

xi



xii



Chapter 1

Introduction

1.1 Introduction

The propagation characteristics of continuously radiated monochromatic ultrasonic sources
are well solved through application of the angular spectrum technique [1] or Fresnel in-
tegrals. More frequently, however, acoustic imaging, tissue characterization, and physical
acoustics applications tend to use pulsed sound. The propagation of pulsed ultrasound with
arbitrary temporal and spatial components is not understood to the same degree. We want
to develop a reliable, easy method of diffraction prediction. This report describes an ap-
proach based on linear systems theory and the Fourier transform. The goal was to achieve a
readily usable method of predicting pulsed wave diffraction in a time-efficient and accurate
manner in order to examine the wave diffraction. Earlier efforts had used FORTRAN code
to implement the propagation model on both a mainframe computer [2]- [6] and a personal
computer [7]. Merrill had attempted to use MATLAB (a commercial matrix manipulation
software package) to perform the calculations on a PC but was thwarted by memory re-
strictions of the earlier versions of this software. More recent versions allow larger matrices
and arrays to be manipulated (subject only to the computer memory available) Thesis work
performed by Upton [8] and Reid [9] applied this updated software to the problems of op-
tical propagation and acoustic propagation, respectively. Much of the foundation for the
work reported here was done by these officer-students.

The basic method of the spatial impulse response was introduced by Stepanishen [10]-
[13], reviewed by Harris [14], and modified by Guyomar and Powers [5]. The approach of
Guyomar and Powers differed by the use of linear systems theory. Linear systems theory
revealed the importance of the total impulse response and its equivalence to the Green's
function. Furthermore, the spatial impulse response functions are found in the spatial
transform (Fourier) domain. Working in the transform domain allowed propagation of the
wave to be viewed as a time-varying spatial filter applied to the spatial spectrum of the
input excitation. The advantage of this method is that it provides the diffracted field from
an insonifying wave with arbitrary temporal and spatial dependence in a computationally

nm ,ram um mummnmnm nnmlnmm n• •,,•- •1



efficient form. By use of the Fourier transform, an efficient computer implementation of
this technique using FFT routines is possible.

The desired benefit of a fast, time-efficient computer implementation to calculate the
acoustic potential or pressure is to aid in ultrasonic transducer design for medical, acoustic
imaging, and mine warfare applications. With a knowledge of wave diffraction phenomenon
a diffracted wave reflected from an unknown object can be used to provide information
about the object. This type of system must be portable as well as time-efficient, which is
very achievable given the trends in computer technology. Computers have become faster and
have increased memory capacity while their size has decreased. Other benefits are derived
from the use of the matrix manipulation program, MATLAB, and the ability to expand
this implementation to cases involving lossy media. Because MATLAB is readily available
on the commercial market, it requires no special equipment for computer implementation.

1.2 Report Overview

Chapter II consists of the problem description, including the source-to-observation plane
geometry, a discussion on the linear systems approach, the mathematical develorment, and
an overview of MATLAB and AXUM. Chapter III consists of a discussion of the two pro-
gram modules, the acoustic filter module, ACSFIL.M, and the acoustic propagation module,
ACPROP.M. Chapter IV starts with the set of defining parameters. These parameters are
then used for an explanation of the program's verification and an investigation of other
input excitation functions. Chapter V contains some examples of the numerical output for
various source excitation conditions.

Following a summary in Chapter VI, Appendices A and C give detailed explanations
of the MATLAB routines that were used to produce the numerical results, ACFIL.M and
ACPROP.M. Appendix B gives examples of the propagation filters generated by the code
in Appendix A. The source code of the various geometric excitation functions is given in
Appendix D. Representative output presentations using a scientific visualization program,
called Spyglass Dicer, are found in Appendix E.

2



Chapter 2

Problem Description

Before assembling a computer implementation, we must first understand the problem. Au
explanation of the problem follows, beginning with the description of the geometry in the
first section. Section two continues the explanation into the linear systems approach. The
third section proceeds through the mathematical development of the problem and ties ill
the Fourier transform. The theory presented in the first three sections was derived from
the works of Guyomar and Powers [3, 4, 5, 6]. The final section gives an overview of the
software tools used for generating the excitation functions, the propagation fields, and the
output graphics.

2.1 Geometry

The problem geometry is shown in Fig. 2.1. The acoustic velocity potential (x, y, z) is
to be calculated at an arbitrary point in the positive-z half-space given the z-directed
velocity in a portion of the source plane. The source's z-directed velocity is spatially and

temporally arbitrary and is rigidly baffled (i.e., equal to zero) in the region outside the
source. Furthermore, it is assumed that the spatial and temporal components of the z-
velocity are separable, having the form at the input plane

v.(zo,yo,O,t) = T(t)s(xO,yO). (2.1)

A linear, homogeneous, and lossless medium ts assumed to be present between the source
and observation point. (The extension to lossy propagation can be found in Ref. [151.)

2.2 Linear Systems Approach

Linear systems solutions axe applied to systems that are linear and time-invariant. A
linear systems solution approach to this problem is possible because propagation in a linear
homogeneous media is a linear, space-invariant process [3]. In linear systems the impulse
response is the response of the system to an impulsive input. The total impulse response

3



Sour ce
p\ pbaneSource

(x0,io,O) ,

Figure 2.1: Source-to-receiver geometry.

h(z,y,z,t) of a system is produced by an input of the form 6(x,y,t) = 6(z,y)b(t); this is
shown in Fig. 2.2a. Figure 2.2b shows the spatial impulse response p(x, y, z, t), defined as
the response to an excitation of the form s(x,y)6(t). Note that an arbitrary spatial input
has been substituted for the impulsive spatial input. Recall from linear systems theory that
the solution for an arbitrary input (spatial or temporal) is the convolution of the input with
the system's total impulse response; therefore, the spatial impulse response in this case is
given by

p(x,y,z,t) = s(x,y) ,h(x,y,z,t), (2.2)

where indicates convolution with respect to the variable shown.
The double convolution in Eq. 2.2 is not easily computer implemented. The Fourier

transform furnishes a convenient method to resolve this dilemma by using the property
that convolution in the spatial domain becomes multiplication in the transform domain,
i.e.,

A(f=,f•,z,t) = (f•,f 1 )h(f•,f•,z,t), (2.3)

where the tilde notation indicates the Fourier transform of the function (in this case, the
two-dimensional spatial Fourier transform). This relation is shown in Fig. 2.2c.

The general solution is shown in Fig. 2.2d, where

0(xy,z,t) = s(x,y)T(t) t h(x,y,z,t). (2.4)

4



6(x,y)6(t) Propagation h(x,y,t)
& boundary >
conditions

(a) p(x,y,z,t)

s(x,y)T(t) Propagation s(xt)** pxy,,t)

& boundary
conditions

(b) P(fx fyzt

-S(f x'fy )6(t) Propo tincndition sbOnor (fx ,fy )ý(f xJfy

(C) 4)(X,Y,Z,t)=
s~xy)T(t Propagat ~~odtions ono T(t)* p(x,>y,z,t)

(d)
Figure 2.2: Block diagram of (a) the total impulse response h(x,y,t)), (b) the spatial
impulse response p(x,y,z,t) in the space-time domain, (c) the spatial impulse response
ý(f.,Jf,t) in the spatial frequency-time domain, and (d) the general solution k(x, y,z,t).



Substituting Eq. 2.2 into Eq. 2.4 gives

O(x,y,z,t) = T(t) p(x,y,z,t). (2.5)

It follows from Fig. 2.2c and Eqs. 2.2 and 2.5 that the key to finding the general solution
is finding the spatial impulse response p(x, y,z,t) which is, in turn, dependent on the total
impulse response of the system h(x,y,z,t). This total impulse response of the system is
the propagation field that results from an impulsive source, as in Fig 2.2a, that solves the
wave equation and satisfies the boundary conditions. The solution to the wave equation
satisfying the boundary conditions is commonly known as the Green's function; hence, the
total impulse response is simply the Green's function. Therefore, once the Green's function
is known, the total impulse response is also known, and the solution becomes a triple
convolution between an excitation source which is spatially and temporally arbitrary (and
assumed to be known), and the systems' total impulse response or Green's function. The
two spatial convolutions are easily implemented in the spatial transform domain; the time
convolution can be implemented in the temporal transform domain, if desired. We have
found it easier to perform the time convolution directly in the time domain.

2.3 Mathematical Development for Acoustic Propagation

The wave equation for lossless media is

V2 0 = 0. (2.6)c2 t2

The general solution of Fig. 2.2c gives the result in terms of the acoustic potential 0 which
must be found from a z-velocity input. We relate the acoustic velocity and acoustic potential
with the following relationship;

v(z,y,z,t) = -VO(z, 3Y,z,t). (2.7)

Hence, the z-velucik camponent is given by

v2 (X, Y, Z, 0 - 00(x, y, z, t)v•(z~~z~t)= Oz(2.8)

Since the wave equation is in terms of c (the acoustic velocity in the media) and time t, the
partial derivative with respect to z must be related to these two parameters. This is done
by using the fact that a wave traveling in the positive-z direction has an argument of the
form ct - z, resulting in the relationship

a aO7z c j-• . (2 .9)

Applying Eq. 2.9 to Eq. 2.8 . a z-velocity at the input plane (z = 0) as

ao(X, y,0, t) (.0v (x,y,z,t) = c Oat(2.0t)

6



Equation 2.10 requires the acoustic potential at the input plane. It was assumed in
Eq. 2.1 that the z-velocity is separable which also implies a separable acoustic potential.
Such an acoustic potential has the general form

O(X,y,0,t) = s(Xy)r(t) (2.11)

at the z = 0 plane. If Eq. 2.11 is substituted into Eq. 2.10 and the partial derivative is
carried out, then Eq. 2.10 becomes

v.(X,y,z,t) = cs(X,Y)r'(t), (2.12)

where the prime indicates a derivative with respect to the time variable t. A comparison
of the z-velocities given in Eqs. 2.1 and 2.12 indicates that T(t) is equivalent to cr'(t).
Equation 2.12 is now the input in Fig. 2.2c.

As stated earlier, the general solution of Fig. 2.2c is the Green's function. For the
standard wave equation (for lossless media) and rigidly baffled boundary conditions, the
applicable Green's function is [4]

h(x,y,z,t) = 6(ct-Z) (2.13)
27rR

where R = /x 2 + y2 + z2. Substituting this into Eq. 2.2 provides the spatial impulse
response

p(x,y,z,t) = s(x,y) ;h(x,y,z,t)

= s(x,y) (ct - ) (2.14)
~'27rR

Thus, the spatial impulse response in the spatial transfer domain is the product of
the angular spectrum of the source 9 and the propagation transfer function p-, written
symbolically as

X(f,fY,z,t) = g(f-,f 1 ,t)h(,f 1 ,z,t). (2.15)

Taking the two-dimensional spatial Fourier transform of the Green's function in Eq. 2.13
gives the propagation transfer function

h(-,fs,z,t) = {(ct - Z)

= 2Jo (pV/c2t2 - Z2) H(ct - z), (2.16)

where the relationship

bt JO (pVC Z2)H(ct-z) (2.17)
n (ct)n- 1

7



was applied (with r = - T + f.2). The term H(ct - z) is the Heaviside step function and
makes the wave causal.

Equation 2.16 exhibts two important points. The first is that the propagation transfer
function is a Bessel of the first kind of zero order. Secondly, the propagation transfer
function can be identified as a time-varying spatial filter having a Bessel shape. The filter
begins as an all-pass filter early in its time evolution and then becomes more of a low-pass
filter as time progresses. This increasingly narrow low-pass filter reduces the resolution
in the receiving plane of the system as time progresses. In our computer programs, the
propagation spatial filter at various instants of time are produced by the MATLAB file,
ACSFIL.M.

Equation 2.16 is valid for an input that is temporally impulsive and spatially arbitrary.
Taking the inverse two-dimensional spatial transform of Eq. 2.16 would, in this case, give
a final result since convolution with an impulse is the same function at the time that the
impulse occurred. To account for a non-impulsive time input component, the convolution
of Eq. 2.5 must be carried out, resulting in

O(x,y,z,t) = T(t)f.T- {;(f ,Y-,z,t)) , (2.18)

where P is the product of the angular spectrum of the source . and the propagation trans-
fer function h. Since only temporally impulsive inputs are simulated in the examples that
follow, the convolution in Eq. 2.18 was not computed for our cases. Our final solution,
therefore, reduces to taking the inverse 2-D spatial Fourier transform of the spatial im-
pulse response. The program module, ACYPROP.M, simulates the spatial impulse response
solution for the input excitation function distribution chosen by the user.

The program that implements these equations is discussed in Chapter III and detailed
in Appendix C. Illustrative examples of the time-varying filters and outputs follow in the
Chapter IV discussion with more examples supplied in Appendices B and E. The tool
of implementation for the program was MATLAB with graphical assistance provided by
AXUM. Output data was also represented using a scientific visualization program called
Spyglass Dicer. An overview of these programs follows in the next section.

2.4 Software Tools

2.4.1 MATLAB Overview

MATLAB is a high-performance, interactive numeric computation software package for
science and engineering applications produced by The MATHWORKS, Inc. The name
comes from MATrix LABoratory; hence, the basic data element is a matrix (or array),
which does not require dimensioning. MATLAB. A major advantage of MATLAB is that
it uses a "vectorized" approach to computations, simplifying the programming. Another
distinct advantage is the availability of preprogrammed functions, such as calculation of the
two-dimensional FFTs and the Bessel function [16].

8



In MATLAB there are two type of macro-like files. A script file is used to automate long
sequences of commands including functions. Arguments are not passed into script files. A
function file, however, may have arguments passed into it and out of it. Examples of script
files in this thesis include ACFIL.M and ACYPROP.M. Examples of functions include the
input functions, the three dimensional graphing function mesh, and the two "fft" functions
that realize the Fourier transform [16].

The two "fit" functions employed for the Fourier transform are fMt2 and fftshift. The
fMt2 function is a two-dimensional fast Fourier transform and is repeatedly used throughout
our program. MATLAB allows the use of only positive indices in an array. Geometrically,
this is equivalent to working only in the first quadrant of an x - -y plane. Our sources are
symmetric around the origin and we want to display them using all four quadrants. The
key to the transformation is the fftshift function. Figure 2.3a. shows the first-quadrant
representation of a rectangular source centered on the origin. (Note the MATLAB assumes
implicitly that the function is periodic in the x and y directions. Periodic translation of the
first-quadrant in the x and y directions will fill in the rest of the source at the origin.) The
fftshift function rearranges the data so that it is centered in the first quadrant. (Actually
the data is not quite centered when one uses an even number of sample points, since there are
not any sample points aligned with the center. The shifted array is offset from the quadrant
center by one-half of a sample interval in both the x and y directions.) Figure 2.3b represents
the shifted source. For viewing purposes, the shifted version is easier to understand; for
computational purposes the unshifted function must be used to avoid phase errors when
calculating the transform or its inverse. We will use the terms "shifted" for functions
represented in the centered geometry and "unshifted" for the functions represented in the
corner geometry. The interested reader is referred the MATLAB User's Guide [16] for more
details.

The MATLAB mesh command can be used to provide three-dimensional plots of the
computed fields. Alternatively, the input and output data can be stored in ASCII format,
imported into a more powerful graphics package, called AXUM, and plotted.

2.4.2 AXUM Overview

AXUM is an interactive software package for technical graphics and data analysis, produced
by TriMetrix Inc. AXUM allows easy manipulation of raw data imported from MATLAB
in ASCII format. (Data may also be imported from several other formats.) Once imported,
data manipulation can be carried out by AXUM through use of the Transform and Convert
menu options. Then the data is arranged using the MA T2GRID routine found in the History
Editor menu, so that the desired surface plot can be generated. The MAT2GRID routine
produces three columns of data from the original data array by placing each element of
acoustic potential data in the z data column with the indices from the array in the x and
y columns. Once processed, the data is ready for graphing [17].

The Graph menu gives various options for controlling the graph's attributes and general
aesthetics. Once the desired axes intervals, labels, and titles have been set, the graph can
be displayed in the Edit Screen window. The Edit Screen window allows changes to be

9



0

0.

3,-

(o)

4-0

(b)

Figure 2.3: Illustration of the center versus corner geometry.

10



made to the graph while it is displayed. (This can be is time-consuming because the graph
is redrawn after each change.) A useful feature of the Edit Screen window, however, is the
capability to rotate and tilt the graph interactively so that the preferred aspect is achieved.
After establishing the desired attributes, the graph can be saved as a graph or as an image.
The concept of saving the graphs as images is another very useful feature because it allows
a single graph to be assembled and saved as a graph template on which the other images
may be overlaid.

2.4.3 Spyglass Software Overview

The Spyglass software consists of a set of commercial programs produced by Spyglass, Inc.
for the purpose of aiding in visualization of scientific data on Macintosh computers. (One
program, the Transform program, is also commercially available for Unix workstations.)

The Spyglass Data Utility has the capability to read data from a wide variety of formats
into the HDF (Hierarchical Data Format) format 1 used by the Spyglass software. In
particular, for our work, the utility is able to read ASCII data. In our case, we took the 64
ASCII data files produced by propagation model and transferred them to a Macintosh II
computer. The Spyglass Data Utility was used to create an HDF file, representing a data
volume of 128x128x64 samples. (The typical data compression was from 16 MB of ASCII
data to a 6-MB HDF file.)

Spyglass Dicer is a program that allows the user to interactively look at the 3-D data
volume in various ways. Planes of any arbitrary orientation can be inserted or rectan-
gular regions of the data can be observed. (Figures 4.3 and 4.4 on pages 24 and 25 are
representative of the data views that can be obtained with the Dicer program.)

The Spyglass Transform program allows the user to pick a plane of the HDF data volume
(currently, the planes must be oriented perpendicular to one of the axes) and to view it in
a variety of formats, such as a color intensity display, a gray-scale intensity display, or a
surface plot.

'The HDF format is becoming a popular means of transferring large data files between computing
platforms.

11



Chapter 3

MATLAB Modeling of Equations

This chapter discusses the two MATLAB files that implement the model, ACFIL.M and
AC-PROP.M. Together, these script files form the two modules of the program that simulate
acoustic wave diffraction via implementation of the concepts and equations presented in the
previous chapter. The program was written in two modules since the propagation filter
characteristics of the medium depend only on the locations of the source and receiving
plane locations and axe independent of the source geometry. The propagation filters could
be computed once and then be reused for a variety of excitation conditions. This mod ularity
of approach was fortuitous, since the calculation of the Bessel functions in the filters was
computationally intensive. (This modular approach to the calculation of the fields is one
of the major advantages of our method.) A working narrative of ACIL.M opens the
discussion, followed by a working narrative of ACYPROP.M. The excitation functions, or
input functions, are included under the ACYPROP.M heading. A brief summary of the
program steps follows in the final section.

3.1 Acoustic Filter Module

The script file, ACSIL.M (ACoustic FILter) computes the time-varying Bessel filters of
Eq. 2.16, repeated here for convenience as

h(h, f, z, t) = 7 {F(ct2 z)}

= 2Jo (p -,2t2-z2) H(ct -z). (3.1)

Before discussing the coding of Eq. 3.1, the array geometry must be explained.
The array geometry is set by the size of the array and the sampling frequency. The

variable base denotes the number of points on a side in the base array creating an base x base
array. (It is advantageous in calculating an FFT to make base a power of 2; this is not
necessary, however.) Initially base was given a value of 64 as in previous work [31- [7].
Once the program result was verified, base was increased by a factor of two to 128. Making

12



base

bose Su.bo raoy •1Suba'raroy

"> (NO,NO)

Suborray Wi Suborray IV

- base

Array index

Figure 3.1: Offset geometry of base array matrix.

base an even number, however, causes the center of symmetry of the array to fall between
array elements. The center of symmetry of the source NO coincided with the array element
at

NO =base
-O= •+ 1. (3.:2)

2

This results in an offset geometry as shown in Figure 3.1.
The offset center at (NO, NO) divides the base array into four subarrays, each of different

sizes. The fact that the subarrays have different sizes is important in the use of symmetry
because only one subarray is actually computed; the other subarrays are determined by
symmetry. We calculate the data for the NO x (NO - 1) points iii Subarray I. shown in
Fig. 3.1. In addition, data is calculated for an additional column (NO x 1) located at the
right side of Subarray I. (The extra column was required to compute all of the values in the
other three quadrants using symmetry.) Subarrays II, III, and IV of Fig. 3.1 are determined
from Quadrant I using symmetry with MATLAB's flip commands. The use of symmetry in
this manner was employed in both program modules. It should be noted that this assumed
x- and y-axis symmetry imposes an other restriction on the assumed source geometry; this
restriction can be removed by performing the computations over the full dimensions of the
array rather than relying on symmetry to simplify the calculations.

The number of time samples (or number of time slices), slices, was set at 64. Initially.
this was to emulate previous work [3]- [7]; however, the time duration and resolution
proved to be adequate for the follow-on simulhtioia. Although there are 64 time slices.

13



only 61 filters are generated by the MATLAB implementation of Eq. 3.1. The Heaviside
step function in Eq. 3.1 was simulated by arbitrarily setting a variable Step to three which
produces three all-zero rows for the first three time slices. The result is tha. ,lices - Step,
or 61, time slices actually require computing. Since the first three time slices are zero, the
computations start with the fourth time slice at time z/c and proceed to the time value,
time-mar, provided by the user.

Referring back to Eq. 3.1, it is seen that the argument to the Bessel function, pV c2 t2 
- z 2 .

is composed of four variables. Of the four, only the time t varies within the program. In
the MATLAB code, time t is represented by the variable time. As previously stated, filter
generation does not start until time z/c and is linearly incremented to the maximum time
of propagation time.maz. The source-to-receiver distance z was assigned the value z = 10
cm in the MATLAB code and c, the acoustic velocity in the medium, was assigned the value
c = 1500 m/s (velocity in water). The value of z was originally chosen to parallel the pre-
vious wor', [3]- [71 and was found to be convenient for subsequent simulations. The value
of time-.maz was set to 150 us for the verification phase and to 375 ps for the remainder
cf the simulations. Consequently, time ranged from 66.667 ps to 150 ps (or 375 ps) in 61
increments.

The final variable in the Bessel argument to be examined is p. In the MATLAB code, p
was given the name rho and has a maximum value, rho-maz, of 200. The value of rhomaj,
= 200 was arbitrarily chosen subJect to the constraint that it needs to be large enlough that
the field does not extend beyond the edges of the array at its largest width (or else the field
will be abased back into the array from the edges). The value of 200 was chosen fulloving
Merrill (7]. Although rho is not time-varying, it does vary with spatial frequency

p / 2 f+ fY? (3.3)

A vector having NO - 1 points extending from 0 to rho-maz was then formed. Then.
the vector was used in the MATLAB routine meshdom [16] to form two identical matrices
rhoxand rhoy. The meshdom routine takes a given vector and forms two matrices with the
same spacing in the x direction and y direcion. The two matrices, rhox and rhoy represent
fA and f. in Eq. 3.3 and Fig. 3.2, which shows graphically the construction of rho. lII
Fig. 3.2, the inner scales are in terms of the column and row numbers, respectivelY. The
row index runs from I to N0; the column index runs from No to base. The x and y axes
can be rescaled to units of spatial frequency (f. and fs,) with units of cycles/ni. This is
represented in Fig. 3.2 by the outer labeling.

The combination of rho and the other variables forms the argument arg to the MATLAB
Bessel function. Since time varies for each time slice, arg varies for each time slice generating
a filter per time slice. After generation each filter is stored to disk for use by ACPROP.M.
The variables base, NO, slices, and Step are also stored to disk for use by AC-PROP.M.
The interested reader can find a detailed explanation and the source code in Appendix A.
Graphical examples of the time-varying filters are include as Appendix B.

14



200

Quadrant I

>, C

Srhoy

7 rhol

0 NO jrhox __

NO Array index Dose

0 Spatial frequency f, (cycle/m) 200

Figure 3.2: Construction of rho shown graphically.

3.2 Acoustic Propagation Module

The script file, ACYPROP.M (ACoustic PROPagation), allows the user to specify the t'pe
and dimensions of the input excitation. It then takes the user's chosen input function
and simulates propagation as a function of time. ACPROP computes the spatial impulse
response p(x, y, z, t),

p(X,y,z,t) = F-',, {j(/, fohuf, fzt)j , (3.4)

using the time-varying Bessel filters, produced by ACFIL for h(f 1.,f•,z,t). In Eq. 3.4.
Y •1 {I} is the inverse spatial Fourier transform operator and the denotes a transformed
function.

To compute p(x,y,z,t), ACPROP first loads the variables passed from ACFIL and
then queries the user to make an input function choice. The user is given four input
functions from which to choose: Circle, Table, Gaussian, and Bessel. The Table and Circle
are equal-amplitude sources having the shape of a square and a circle, respectively (known
in acoustics as the square and circular piston). The Gaussian and Bessel inputs are circularly
truncated functions that have the indicated amplitude distribution within the circle (i.e..
the amplitudes are spatially varying across the face of the source). Pursuant to the input
function choice, the user is asked to input the diameter d of the truncating circle (or width of
the truncating square w in the case of the Table function). Once the program was verified.
a diameter d of 51 was used; this value is available as the default in the menus. In the

15



case of the Gaussian or Bessel input, the user is further requested to input the standard
deviation sigma or a scaling factor a, respectively. These two function defining parameters
were varied on a case-by-case basis.

The variable shfL-input holds the computed input array that was generated by the func-
tion written to model the chosen excitation function (Appendix D). (The reader is reminded
that shft prefix in a variable name indicates the array has the centered geometry as dis-
cussed in Chapter II.) From shftiinput, Finput is created by shifting (fftshift) shft-input
to a corner geometry and then taking the two-dimensional spatial Fourier transform (fft2).
As explained in Chapter II, the fftshift operation is necessary before the Fourier trans-
form operation to obtain the correct phase relationship in the transform operation. With
a shift back to the center geometry, the angular spectrum of the source 9(f..J•), called
shftFoinput in the program, is created for user viewing, if desired. The Bessel-function
propagation transfer function h(fj,fu,z,t) from Eq. 3.1 must now be loaded so that the
angular spectrum-propagation transfer function product 9h on the right side of Eq. 3.4
can be formed. The loading and multiplication process is repetitive since shftF-input must
form a product with the filter (or appropriate propagation transfer function) from each time
slice. This repetitive multiplication is accomplished with a loop.

The product of 3 and h (called shfLF-output). To find the desired result, the two-
dimensional inverse spatial Fourier transform (ifft2) must be taken. Before this can be
done, FKoutput is formed by shifting shftF-output from the centered geometry to the corner
geometry. Executing the inverse transform of the product yields the output (output) which
is then shifted to give shfLoutput for viewing. The array shfLoutput represents the output at
the time slice that the loop is currently computing; shfLoutput does not depict the acoustic
potential (or propagation pattern) through time; it only depicts the acoustic potential at a
specific time.

To produce a time history of the desired output, the center row (row NO) of shfLoutput
is taken and placed in the array output-plot as the m-th column (m is the loop counter
which relates directly to the time slice number, i.e., when m = 4, the computations for the
fourth time slice are performed). This results in an array whose size is base x slices when
Step zero-valued rows are added (that precede time slice NO row. The output examples
are graphical interpretations of output-plot. Results generated in this manner are given
in Chapter IV for all of the excitation functions. A detailed explanation of ACPROP is
provided in Appendix C.

3.3 Program Summary

The previous two sections gave an overview of the two program modules, ACFIL and
ACPROP, including the code variable names and values assigned. What follows here is a
summary of the steps that the program accomplishes. Step one is accomplished by ACFIL.
In this step the slices-Step filters to be used by AC._PROP are generated and saved.

ACPROP generates the user-specified excitation function s(x,y). Then the angular
spectrum of the source §(f.,j•) is computed by taking the 2-D spatial Fourier transform

16



of s(x,y). The product Ah is computed for each time slice via a loup. In the loop, the
inverse 2-D transform of the product forms an output for the specific time slice. The NO-thk
(center) row of that output is then placed in successive columns of a new array to form the
final output, p(x,0, 10,t).

In the following chapter, examples of the final outputs are given. The excitations used
for lerification, as previously related, are the Table and Circle excitation functions. New
values, as explain in this chapter, were then used for the simulation of the Gaussian and
Bessel excitations.

17



Chapter 4

Numerical Simulations

In the previous chapter, a functional explanation of the two program modules was given
including values assigned. The first section of this chapter reiterates the defining parameters,
gives a brief explanation of each, and gives the parameter's units. In the following section,
the defining parameters are given the values used to verify correct operation of the programn
for the circular and square piston sources. The last section presents results for the non-
piston Gaussian and the Bessel excitation functions.

4.1 Defining Parameters

A defining parameter is a parameter that delineates an aspect of the basic setup upon
which all the remaining parameters or variables depend. In the work of this thesis there
are two sets of defining parameters-those for the filter generation and those for generation
of the excitation functions. The filter parameters are found at the beginning of ACFIL.
ACYPROP reads these parameters from a data file that is stored with the results of the
filter calculations.

The defining parameters found in ACYFIL include base, slices, Step, c, z, time-max, and
rho-max. The first parameter base sets the dimensions of the base array, giving the number
of sample points. The dimensions of the base array are, therefore, base x base where base is
required to be a power of two (typically, 128). Making base a power of two allows MATLAB
to use a high-speed radix-2 fast Fourier transform algorithm [16] to compute the spatial
transforms. The next parameter slices is the number of time samples. Of these slices time
slices, slices-Step slices require filters to be computed; the parameter Step is the number of
leading-zero rows in the base x slices output array; as explained in the preceding chapter,
this simulates the Heaviside step function. The parameters base, slices, and Step are unitless
and are stored by ACFIL in a file for use by ACYPROP.

The remaining defining parameters of AC.FIL have units and are used only in the
computations of the filters. The acoustic velocity in the medium, free--space in this case,
is denoted by the parameter c having the units of m-s- 1 . The source-to-reception point
distance has the designation z with units of meters. The maximum time of propagation

18



Parameter Definition (units)
base* Size of square base array

slices* Number of time slices
Step* Number of leading zero-rows

c* Acoustic velocity in media (m/s)
z" Distance, source-to-receiver (m)

time.max" Maximum time of propagation (s)
rho.maz" Spatial radius of the filters (length-')

* passed to AC_PROP.M

Table 4.1: Summary of the defining parameters in ACYIL.

time-max has units of seconds. The spatial-frequency radius of the filters rho-max (or rho)
has units of inverse length (i.e., m- 1 , cm 1 , etc.). The unit of length depends on the area to
be represented by the base array. These four parameters relate directly to Eq. 3.4 and are
the parameters that dictate the diffraction properties of the filters. Table 4.1 summarizes
the defining parameters found in ACYFIL.

Another important set of defining parameters is the set that defines the user chosen in-
put. These input defining parameters are entered by the user when requested by ACPROP.
Once the input function is chosen, the diameter of the truncation circle d is input. (The
width of the table w (vice d) is input in the case of the Table excitation.) The parameters
d (or w) are expressed as the number of points, out of base total points, that define the
diameter (or width) of the function

To transition from a diameter in terms of a number of points to an actual metric value,
two equations were needed. The equations are

1
Ax = (4.1)

2 Pmax

and

d kAx (4.2)
k

2 pmax ' (4.3)

where Ax is the length of a segment, P,.x is the maximum spatial radius, k is the number
of segments, and d is the diameter (or width w for the Table function). To determine the
metric diameter, Eq. 4.1 was used to solve for Ax by setting Pmr.x to 200 m-'. This value
resulted in a Ax of 2.5 x 10-3 m or 2.5 mm.

If the Gaussian excitation is selected, the user enters the value of the standard deviation
a, upon requ,,st. In a Bessel excitation selection the user enters the scaling factor a when
requested. Table 4.2 gives a summary of the defining parameters used in ACPROP.

19



Parameter Definition (units)

base* Size of square base array
slices* Number of time slices
Step* Number of leading zero-rows

c" Acoustic velocity in media (m/s)
e Distance, source-to-receiver (m)

time-max* Maximum time of propagation (s)
rho-max' Maximum spatial frequency (m-1)

d Diameter of excitation function (sample points)

W Width of Table excitation function (sample points)

a Gaussian standard deviation
a Bessel scaling factor

"passed from ACFIL.M

Table 4.2: Summary of the defining parameters used in ACPROP.

4.2 Program Verification

In verifying the program output, two excitation functions were used, the Table and the Circle

functions. The outputs generated by the program from these excitations were compared
to the results found with the previous FORTRAN implementations (4, 3, 7] for validation.

After a general explanation about the generation, formatting, and titling of the outputs,
the two excitation functions are presented. The Table, the first verification function, is then

discussed and a table of defining parameters is given. The second verification function, the

Circle, follows with a similar discussion and table of defining parameters.

4.2.1 Format of Results

The graphical outputs for the two excitation functions used for verification, the Table and
the Circle, were generated, formatted, and titled in the same manner. The outputs are for

a source-to-receiver distance of z = 10 cm. Each output was for a given time slice and
consisted of a 128x128 array of values. There were 64 time slices including 3 leading all-zero
arrays which simulate the step function at the arrival of the wave (t = z/c). The MATLAB

programs contain optional commands to plot the output data using MATLAB's plotting
routines or to store the data in ASCII format for importation into the AXUM plotting

program. (The AXUM program is more flexible than the MATLAB plotting routines.)
Additionally, the 64 data arrays were combined with the Spyglass Data Utility into a

128x128x64 array. Spyglass Transform and Dicer could be used to interactively pick the
data slice of interest and to plot the results.

20



NAME VALUE DEFINITION

base 128 Size of square base array
slices 64 Number of time slices
Step 3 Number of leading zero-r•..

c 1500 Acoustic velocity in media (m/s)
z 0.1 Distance, source-to-receiver (m)

time-max 3.75 x 10-1 Maximum time of propagation (s)
rho..max 200 Spatial radius of the filters (length-')

w 23, 31 Width of Table (samples)

Table 4.3: Values of defining parameters for the Table input function used for program
verification.

4.2.2 Table Impulse Excitation

The first excitation function to be run by the program was the Table function (for a square
piston source). There were several reasons to use the Table as the first input; the Table
function is an easy function to implement and the results could be readily compared to
results found in the literature [3, 5, 6, 7]. Table 4.3 provides list of the defining parameters
used.

The values of base, slices, z, time-max, rho-max, and w chosen in Table 4.3 parallel
those found in the literature used for validation. The acoustic velocity c of 1500 m/s is
the velocity in water. To simulate the step function, a number Step of leading zero-rows
was incorporated and arbitrarily set to three. The results were comparable to those in the
literature ana are presented (with the input functions) in Figs. 4.1 and 4.2.

Here the widths w = 23 and w = 31 samples translate into metric widths of w = 5.5 cm
and w = 7.5 cm, respectively. In the w = 23 case, k = 22 was the input in Eq. 4.3 and, in
the w = 31 case, the input was k = 30 samples. Note that the x and y axes of the input
functions range from 1 to 128, delineating a 128x128 base array.

The outputs present the magnitude of the acoustic potential at an observation point 10
cm from the source, p(x,0, 10,t). A diffraction duration from the initial impulse (t = 0) to
t =time-max (150 jss) is represented as a function of radial distance; i.e., p(x,0, 10,0) to
p(x, 0, 10,150) is represented. This gives the 3-D view of the general diffraction through
time. The output images show several interesting features.

The development of "tails," explained in terms of edge waves [3, 18], can be seen in
the 3-D images. Also of note are the overshoots, having a maximum magnitude of 2.11
(both cases), and the undershoots (difficult to see in these two cases); these are due to the
additive nature of the interference patterns of the waves originating on the edges of the
discontinuous source.

21



(o)

N

bD

(b)

Figure 4.1: Table spatial input and time-space output for w = 23 samples (w = 5.5 cm) at
z = 10 cm.

22



.Pp
(a)

!-0

b

Figure 4.2: Table spatial input and time-space output for w = 31 samples (w = 7.5 cm) at
z = 10 cm.

23



Pro - P bon of lbel ju,31)

127

* -.gg

-01455 2.~ud 070

Figure 4.3: Table output for d = 31 samples. Dicer representation.

3D outputs for Table excitation

The Spyglass Dicer program allows selected three-dimensional representations of the propa-
gation output. Figure 4.3 shows a rectangular cube set into one-fourth of the data volume.
The x and y axes represent the spatial variables and range from 0 to 127 samples. The time
axis represents the 64 time slices of data that were computed. To elongate the time axis,
the Dicer program was used to increase the number of slices by a factor of 4x (to a total of
256 slices); linear interpolation is used to compute the values of the expanded slices lying
between the original slices. Due to the nature of the interpolation used, only the expauded
slices ranging from 0 to 252 are shown on the time axis. The three visible surfaces of the
rectangular cube show the calculated data in three planes. The three planes are located at
z = 64, y = 65, and time = 252. An additional plane is located at time = 16 to show the
shape and size of the source (since the theory predicts that the field at time = 16 expanded
samples [when t = z/c] duplicates the source excitation).

An alternative Dicer representation of the field is shown in Figure 4.4. Here, a horizontal
slice of the data is placed at y = 65 and five vertical slices of the data are located at x" -

24



- Pr ationottable(128.31)

127

0 arne240

-o.1455 Am btiude 2.070

Figure 4.4: Table output for d =31 samples. Alternative Dicer representation.

25



16, 64, 132, 200, and 252. (The values were arbitrarily chosen, but were restricted to be a
multiple of four to avoid showing interpolated values of data.)

Appendix E contains Dicer representations for the other Table and Circle excitations
that were studied.

4.2.3 Circle Impulse Excitation

The defining parameters for the Circle excitation are the same as those introduced in Ta-
ble 4.3 with the exception that only the d = 31 case is presented. A diameter d = 31 samples
translates into a metric diameter of d = 7.5 cm. Again the results are comparable to those
found in the literature [5, 7]. Figure 4.5 gives the input function and the ensuing outputs.
As in the Table case, the base array is a 128x128 array with the propagation pattern formed
by successive p(z,O, 10,t) time slices. The results in Fig. 4.5 for the Cirle excitation are
much the same as those for the Table in Fig. 4.2. The "tails," however, shown in the 3-D
image of Fig. 4.5 are rounded instead of cornered as in the Table output. Though the ' bl(
output holds its magnitude for a longer time, the maximum for the Circle output is greater
at 2.21. (This value was read from the array; it is difficult to obtain quantitative infornia-
tion from the 3-d plots.) Also the drop off from the maximum is steeper for the Circle. The
greater maximum and steeper drop off are due to the equal distance of all edge points from
the center. This same geometric influence also accounts for the Circle holding the input
value for a shorter duration. Just as the interference patterns added to a maximum greater
than the input, the interference patterns also combine to give a more negative mininuni.
The negative undershoot was present for the Table; however, it has a magnitude five times
greater for the Circle.

4.3 Other Input Excitations

Having checked the performance of the technique with piston sources, other sources with
nonuniform spatial excitations were investigated The first is a circularly truncated Gaussian
distribution function. Following the Gaussian, a circularly truncated Bessel profiled function
is examined. These two excitation function outputs are generated and formatted the same.

4.3.1 Gaussian Distributed Excitation

Though the Gaussian has been investigated before [3]- [7], it has not been studied as
a 128x128 array. The defining parameters for the case studied are listed in Table 4.4.
Figure 4.6 shows the input and resulting output.

The Gaussian excitation function has been normalized by the maximum value of the
computed Gaussian (see the Gaussian source code titled CRCGAUS.M in Appendix D).
This normalization is shown in the input image of Fig. 4.6 by the maximum amplitude of
one. Displayed as a base x base array, this input image has a standard deviation of a = 5
and a 1/e point of 10.17 samples from the center (metric equivalent of r = 2.54 cm). The
diffraction of this input is shown in Fig. 4.6.

26



(b)

Figure 4.5: Circle input excitation and output for d = 31 samples.

27



o t

(a)

(b)

Figure 4.6: Gaussian distributed input and output for a = 5.

28



NAME VALUE ISUMMARY

base 128 Size of square base array
slices 64 Number of time slices
Step 3 Number of leading zero-rows

c 1500 Acoustic velocity in media (m/s)
z 0.1 Distance, source-to-receiver (m)

time-max 375 x 10-6 Maximum time of propagation (s)
rho-max 200 Spatial radius of filters (length- 1 )

d 51 Diameter of excitation function (samples)
a 5 Gaussian standard deviation

Table 4.4: Defining parameters for Gaussian excitation case.

NAME VALUE SUMMARY

base 128 Size of square base array
slices 64 Number of time slices
Step 3 Number of leading zero-rows

c 1500 Acoustic velocity in media (m/s)
z 0.1 Distance, source-to-receiver (m)

time-maz 375 x 10-6 Maximum time of propagation (s)
rho-max 200 Spatial radius of filters (length- 1 )

d 51 Diameter of excitation function (samples)
a 0.25 Bessel scaling factor

Table 4.5: Defining parameters for Bessel excitation case.

The 3-D image shows a diffraction pattern that is well established by time t = time-rauax,
forming two spreading "tails." The "tails," as well as the rest of the Fig. 4.6. diffraction
pattern, are smoothly rounded. This rounding is the result of the continuity of the Gaussian
distribution. A diseontinuity, as in the previous two excitation shapes, results in a char-
acteristic over and undershoot of the maximum and minimum inputs. Again, the results
for this Gaussian excitation conformed to those found in the literature [3, 4, 5, 6, 7]. The
Bessel excitation was then run and the results compared to those of the Gaussian.

4.3.2 Bessel Excitation

Results for the Bessel excitation produced by CRCBES.M were generated, as previously
discussed, for the set of defining parameters listed in Table 4.5.

The resulting input and output are shown in Fig. 4.7. Since the output is formed by

29



(a)

(b)

Figure 4.7: Bessel-profile input and output for a = 0.25.

30



taking successive p(x, 0, 10, t) vectors, three peaks appear in the 3-D image. These three
peaks correspond to the center peak and the points on the two crests directly adjacent
to the center. As a result of having three peaks, three "tails" are present. The "tails,"
however, are smooth because a Bessel function is a continuous function. Also worth noting
in the 3-D image is the simulated step function, more visible here due to the oscillations of
a Bessel.

Comparing the Gaussian and Bessel outputs, it is seen that the Gaussian's magnitude
retention is slightly longer than that of the Bessel. This is due to the more gradual decrease
in magnitude vice the steeper decrease required of the Bessel so that it can become negative.
Still no hard conclusions can be drawn without further analysis.

31



Chapter 5

Summary

This report presented a MATLAB implementation of a Fourier approach to acoustic wave
propagation. A mathematical development using linear systems that found the acoustic
potential from an arbitrary spatial and temporal source was reviewed. In the mathematical
development, it was shown that the Green's function solving the appropriate wave equation
and satisfying the boundary conditions is the total impulse response of the system. Through
double and triple convolutions, the acoustic potential could be found for any source sepa-
rable in time and space. Use of the 2-D spatial Fourier transform, however, translated the
convolution to multiplication in the spatial frequency domain. This made the MATLAB
implementation easier.

After an overview of MATLAB and the graphics program AXUM, a functional descrip-
tion of the program was furnished. The program modules ACFIL and ACPROP both
made use of symmetry. ACSFIL generated the time-varying filters, the most time con-
suming process, while ACPROP accomplished the remaining computations making use of
MATLAB's "fft2" function. Details of both modules as well as the source code have been
included in the Appendix A.

Several examples were delineated in the body of this thesis. First, the Table and the
Circle were presented as the program verification excitations; the results conformed to those
found in the literature. Then two newer excitation functions, the Gaussian and the Bessel,
were presented.

The underlying result was an accurate and efficient computer implementation of the
linear systems approach to ultrasonic wave propagation. The efficiency was derived from the
modularization of the program so that consecutive runs could be made without recomputing
the most time consuming portion, the filters. Also, the use of MATLAB's "fMt2" function
bypassed tedious and time-inefficient convolution integrals. Finally, both modules made
use of symmetry by computing only one quadrant of data which was then manipulated into
the remaining quadrants. An advantage to using MATLAB was the ease of expansion that
could be accomplished with the program.

The work of this report concentrated on a source with rigidly baffled boundary condi-
tions and a lossless media. Cases that include free space and resiliently baffled boundary

32



conditions as well as lossy media, linear and quadratic lossy media, could be incorporated.
A few facts worth noting here are that the free space and resilient baffle boundary conditions
can be expressed in terms of the rigid baffle case [4] and that the lossy media and lossless
media transfer functions are interdependent [6]. Furthermore, new excitation functions,
such as a phased array or a focused source [2], could also be incorporated. Improvements
are needed in the area of analysis such as the Gaussian versus Bessel propagation compar-
ison and extending the technique to sources that are not time and space separable such as
new non-diffracting waves [19].

5.1 Acknowledgements

This work was supported by the Direct-Funded Research program at the Naval Postgradu-
ate School. The author would like to acknowledge the contributions of Dr. Daniel Guyomar,
who developed the mathematical theory of the method while serving as a National Research
Council Postdoctoral Associate at the Naval Postgraduate School. The programming con-
tributions and insights offered by LT Tim Merrill, USN; LCOL John Upton, USMC; and
LT Bill Reid, USN, are gratefully recognized. In addition, our lab engineer, Mr. Ray van
de Veire, eased the programming and plotting of the outputs.

33



Appendix A

Source Code for ACFIL.M

The following is the source code used to generate the time-varying filters as discussed in
Chapters II and III. ACFIL.M was written in block format with each block headed by
a descriptive comment to explain the block's function. The code includes many optional
instructions indicated by the leading %* symbol. Deleting this symbol will enact that
line of code on succeeding program runs which, in turn, varies the output. The outputs
necessary to a successful run of AC.PROP.M are the files, ACbasex(m + Step).MAT (where
m is an index number from 1 to 61). and the file, ACFIL.MAT. For example, the file,
AC128xO8.MAT, contains the data for the propagation spatial filter in a 128x128 array for
the fifth time slice (since Step = 3). The file, ACFIL.MAT, contains the parameters needed
in ACYPROP.M.

Code is provided for both the DOS version and the Sun workstation version of MAT-
LAB4. There are two primary differences in the versions. First, the paths to disk storage
axe different, to reflect the path setup on the two host machines. Secondly, the commands
to obtain a hard-copy version of MATLAB4's graphics differed. In the DOS version, the
user prints copies from the menu associated with the graphics window or with a print com-
mand. In the SUN version, a hard copy can be printed only by a print command. Each
method is included in the file text; the user selects the appropriate command by removing
the "the desired lines.
ACFIL.M SOURCE CODE

%**** AC.FIL.H ****

%% This program generates an Acoustic Propagation Transfer
XX Function, a time varying spatial filter, for use in
XX ACPROP.M to simulate acoustic wave diffraction.
UX William H. Reid December 1992
UX Modified for MATLAB4 and Sun. 9/93 JPP

clear; 7. Clear MATLAB

34



tmluclock; ; % Start timer clock

base = 128; % Size of square base array.
NO a (base/2)*l; % Defines center of square base array.
slices a 64; % Number of time slices.
Step - 3; % Number of leading zero time slices,

% simulates the step function.
c a 1500; % Velocity of the acoustic wave, (m/s).
z a 0.1; % Distance to the observation plane, (m).
time-max - 3.75e-4; % Maximum time of propagation,

% time at the final time slice, (sec).
rho-max a 200; X Spatial radius of the filter,

% (sqrt(rhox-2 + rhoy-2). (per length)

U Initialize arrays to reduce processing time.
shft-filter = zeros(base); temp - zeros(NO);
arg a zeros(NO); rhom - zeros(NO,1);
rho - zeros(NO); time - zeros(slices-Step,l);

X Generate "slices-Step" time slices between z/c and time-max.
time - linspace(z/c,time.max,slices-Step);

X% Choose directory to store data.
cd i:/ac-prop/filters % PC version
%* cd /home2/powers/M-files/ac.prop/filters % SUN version
HX Save variables necessary for passing to ACPROP.M in ACFIL.MAT.
save ac-fil base NO slices Step c z time-max rhoemax;

X% Generate NO-i values of "rhom" from 0 to rhoemax.
rhom - linspace(O,rho-max,NO-1);

U Add additional increment to rhom to compensate for off-center
UX orientation of the final base x base matrix.
rhom = [rhom (rhom(NO-1)+rhom(2))];

U Create two NO x NO arrays of rho values for function evaluation.
[rhox,rhoy) = meshgrid(rhom,rhom);

U Calculate "rho", an NO x NO matrix of radial distances for use in
U the argument to the Bessel function within the loop.

rho= sqrt(rhox.-2 + rhoy.-2);

35



%%%%%%%%%%%%7.77.7 STARTLOOP UU.M777...77
%.7 Generate "slices-Stop" filter arrays, the filter at each time slice.

for a - 1:(slices-Step)
fprintf(7.3.Of1,m); %. Display m value for user -rogress report.

U.7 Create an NO x NO array of argument values for the Bessel function.
arg a rho * sqrt(c-2*time(m)-2-z-2 );

U.7 Evaluate the zero order Bessel for each argument value;
U.7 create. an NO x NO array called "temp"t .

temp a2*besselj(O,arg);

U.7 Create shft-.filter matrix containing the spatial filter.
U.7 (Done by flipping "temp"2 into all quadrants.)
shft..filter(NO:base,NO:base) temp(1:NO-1,1:NO-1);
shft..filterCNO:base,1:NO-1) -fliplr(temp(1:NO-1,1:NO-M);
shft..filter(i:NO-1,1:NO-1) *temp(NO:-1:2,NO:-1:2);
shft-.filter(1:NO-1,NO:base) =flipud(temp(2:NO,2:NO));

UX Save shft...filter in a file named "a(base)x(m+Step).mat".
cd i: /ac-.prop/filters %. PC version

7.* cd /home2/powers/M-.files/ac-.prop/filters %. SUN version

if (m+Step) < 10,
UhI MATLAB format
eval(['save a' ,int2str(base), 'xO',int2str(m+Step),I shft..filter ms' )
U.7 ASCII format
7.* eval(C(save a' ,int2str(base) 'xO' ,int2str(m.Step),' .dat shftjfilter..
7.. /ascii']);

else
U.7 MATLAB format
eval(E'save a' ,int2str(base),'x' ,int2str(m+Step).,' shft..jilter m' )
U.7 ASCII format
7.* eval(['uave a' ,int2str(base) ,'x'.int2str(m+Step) ,'.dat shft-.filter...

%* /ascii'));
end

end
%%%%%%.END LOOP'%%%%%%%%%.'

toc; %. Stop timer clock
time-.elapsed - etime~tm2,tml)/60 %. Compute A display execution time

36



Appendix B

Examples of the Time-varying
Propagation Bessel Filters

This appendix contains examples of the time-varying filters (Eq. 3.1 on page 12) produced
by AC.FIL for the parameters described in the text. Only a few of the 61 total slices are
shown. The first slice, at t = z/c, is a plane with amplitude two; this is because the input
3 rgument to the Bessel function is zero giving an output value of one. This uniform plane
produces an output for time slice one that is a scaled replica of the input. The remainder of
the filters illustrate the time variance and how the filters collapse inward with time. Each
filter is a 128x128 array representation in the spatial frequency domain.

37



(a)

(b)

(c)

Figure B.I: Propagation filter at time slices 1, 2, and 5.

38



(a)

(b)

(c)

Figure B.2: Propagation filter at time slices 10, 20, and 30.

39



Appendix C

Source Code for ACPROP.M

The following is the source code for ACYPROP.M that was used to produce various outputs,
including those discussed in Chapter IV. ACPROP was written in blocks with each block
headed with a descriptive comment to explain the block's function. This also makes it
easy to follow the computation from inputs to output. Inputs to AC.PROP are imported
from the file AC.SIL.MAT and the files Abasexm + Step.MAT (m is an index number
ranging from 01 to 61). The program solicits user input to determine the input excitation.
AC-PROP then computes the output.

The format of the output can be changed by the user. Before running the program, the
user can remove the optional comment markers indicated with %% to produce and/or view
the output in the desired format. This allows the data to be saved and exported in ASCII
format for use with other graphics programs (such as AXUM, see Chapter II).

ACPROP.M SOURCE CODE

% %*** ACPROP.M ****

U? This script file performs transient-wave acoustic propagation
%% simulations. It uses the time-varying spatial filters called
U, "shft-filter" found in the filters directory under "a(base)x(m).mat"
U to compute the acoustic propagation fields. The "shft.filter"
%% data are generated by ACFIL.M.

%% William H. Reid, December 1992
%% Modified for MATLAB4 and Sun. 9/93 JPP

clear; clc; %. Clear MATLAB
tic; % Start timer
format compact % Set compact format for screen display.

40



UX Load the parameters generated by last run of ACFIL.M.
UX PC and SUN directories have different names

cd h:\ac.prop\filters % PC version
X* cd /home2/powers/M.files/ac.prop/filters % SUN version
load ACFIL

UX Display the size of the square base array.
disp('base is the width of the array.'); disp(' '); base

UX Generate the INPUT function from user interface.
input.func a menu('Choose the shape of input function.','Circle',

'Square'. 'Truncated Gaussian','Truncated Bessel');
if isempty(input.func); input.func = 3; end % Default to Gaussian input.
if input.func am 1, X Cicle input

name='c';
disp('You have chosen a truncated circle input.')
d - input('Please enter an ODD diameter, [51), d =

if isempty(d); d a 51; end % Default diameter: 51 samples
shft.input a crcle(d~base); % Create Circle input
% Name a file to hold the input function.
InFileName = [name, 'i' ,int2str(base),'x',int2str(d)];
X Name a file to hold the output.
OutFileName = [name, 'o' ,int2str(base), 'x' ,int2str(d)];

elseif input.func 2, Y% Square input
namea's';
disp('You have chosen a truncated square input.')
v a input('Please enter an ODD width, [11], w a 1);

if isempty(w); w a 11; end X Default width: 11 samples
shft.input = table(w,base); X Create input

d =;

%. Name a file to hold the input function.

InFileName = [name,'i' ,int2str(base), 'x' ,int2str(d)];
% Name a file to hold the output.
OutFileName = [name, 'o' ,int2str(base), 'x' ,int2str(d)];

elseif input-func an 3, 7. Gaussian input
name-'g';
disp('You have chosen a truncated Gaussian input.')
sigma - input('Please enter the standard deviation, [10), sigma =

if isempty(sigma); sigma = 10; end % Default sigma: 10 samples
d = input('Please enter an ODD diameter, [51], d - 1);

if isempty(d); d a 51; end 7. Default diameter: 51 samples

shft.input = crcgaus(sigma,d,base); % Calculate input

41



% Name a file to hold the input function.
InFile..Name a Lname,'i' ,int2str(base), 'x',int2str(d));
% Name a file to hold the output.
Out~ile-.Name = [name. 'o',int2str(base), 'x',int2str(dXJ;

elseif input..func as 4, %~ Bessel input
namen'b'
disp('You have chosen a truncated Bessel input.')
a a input('Please enter a width scaling factor, [0.312S), a

if isempty~a); a - 0.3125; end % Default: 0.3125
d - input('Please enter the ODD diameter. (51], d = )

if isempty(d); d a SI.; end % Default: Si samples
disp&'Please wait. This calculation takes a while....
uhf t.input = crcbess(a,d,base); % Calculate input
q = a * 1e4;
% Name a file to hold the input function.
InFile-.Name = [name,'i' ,int2str(base) ,'x',int2str(q));
% Name a file to hold the output.
OutFile..Name a [name, 'o' ,int2str~base), 'x',int2str(q)];

lue
disp(' )
dispC'Incorrect Excitation Function Selection!');
error('Resta~rt AC..PROP. .. .to try again. 'j;

end

U.? Save the input function placed in "InFile-Name" in ascii format
U.7 for use with other graphics software.
eval(C'save ',InFile-.Name,' .dat shft..input /ascii']);
clear InFile..Name; % Remove "InFile-.Nanie" from memory.

U.? Compute the sample spacing in x and y (delta-.x) and the spacing in
U.7 time (delta-.t).
delta-.x - (base-2)/C2*rho-.max); delta..t = time-.max/(slices-Step);
U.? Create X and T vectors (1 x base).
X lin~space(-(NO-I.)*delta-.x,((base-NO)-1)*delta-x.,base);
T a linspaceC-3*delta..t,time..max,slices);

U.7 Display the input function.

%* axis(C (XCI. X(base) XCI. X(base) ...

Y*min( E 0 min(min(abs~shft-.input))) ))max(max(abs(shft-.input))) 3))
7.* xlabelC'x (cm)'); ylabel('y (cm)'); zlabel('amplitude'); viewCS2.5,30);,

42



%% SUN: Save input figure as eps file.
%* cd /home2/powers/M.files/ac.prop/data

U PC: save figure from figure window.
%* cd h:/ac.prop/

NY Save input plot as EPSF file with bitmap preview image.
Y.* disp(' '); disp('Saving input plot as EPS file ..... '); disp(' ');
%* eval(['print -deps -epsi ',name,'.in-b',int2str(base),
%* '_d',int2str(d)j);
%* disp(' '); disp('Saving input plot as EPS file ..... '); disp(' ');

%* eval(['print -deps -epsi ',name,'_in.b',int2str(base),
%* '_d',int2str(d)]);

X% Shift "shft.input" from centered geometry to •orner geometry and take
%X 2-D FFT to produce FINPUT.
F-input = fft2( fftshift(shft.input) );
clear shft.input; % Free RAM.

HX Shift F-input in preparation of multiplication with PROP-m.
shftF-input a fftshift(F-input);
clear F-input; % Free RAM.

UX Element by element arrray multiplication of the transfer function
UX filter in "PROP-m" and "Fshft-input."
disp('Performing array multiplication.... ');

%* cd /home2/powers/M-files/ac.prop/data % SUN version

sd h:/ac.prop/data % PC version

YA Save "Step" arrays full of zeros for first array values.
%%%%%%%%%%%%% START FIRST LOOP %%%/%%%%%%%%%%%
for m=i:Step

shft-output a zeros(base);
%% Save the (base)x(base) array "shft-output" in an ASCII file whose
%% name is "(input-func)_OUT_(m).dat".

eval(E'save ',int2str(input-func) ,'OUTO',int2str(m),
'.dat shft.output /ascii']);

clear shft-output; % Get ready for next pass.
end
%%%%%%%%%%%%% END FIRST LOOP %%%%%%%%%%%%%%%

43



% %%%%%%%%%%%% START SECOND LOOP %%%%%%%%%%%%%%%
for m a 1:(slices-Step)

fprintf('X2.Of,',m) X Display hIm" value for progress report.

U Give the variable "filenamel" the name of the file containing
XY "shft.filter" and then load that file.

if m < 10-Step,
filenamel = ['a',int2str(base),'xO',int2str(m+Step)];

else
filenamel a ['a'.int2str(base),'x',int2str(m+Step)];

end
%* cd /home2/powers/M-files/ac.prop/filters % SUN version

cd b:/ac.prop/filters % PC version
eval(['load ',filenamel) );

U Multiply the filter by the shifted transform nf the input.
shftF-output = (shft.filter .* (shftF.input));
clear shft.filter; % Free RAM

%% Shift "shftF.output" from centerd geometry to corner geometry
U ("F.output") and take inverse transform to produce "output."

output = ifft2( fftshift(shft.F.output) ) ;
U Shift "output" to center geometry ("shftoutput").

shft.output = fftshift(output);
U "shft-output" is the centered geometry version of the diffracted
U wave at time slice "m".

clear shftF-output output % Free RAM.

U Place the transposed "NO" (center) row of "shft.output" in the
%% (m+Step)-th column of "output-plot."
U This czeates a (base) x (m+Step) array whose columns show a slice
U of the diffracted wave.

output-plot(1:base,m.Step) = (shft-output(NO,1:base))';

U Save the (base)x(base) array "shft-output" in an ASCII file whose name is
VI% "(input-func)_OUT_(m+Step).dat".
U A Gaussian, for example, would be GOUT_12.dat on the 9-th loop
U interation (Step = 3). This is optional for graphics use by
U other software.
%* cd /home2/powers/M-files/ac-prop/data % SUN version

cd h:/ac.prop/data % PC version
if m < 10-Step,

44



eval(('save ',int2str(input-.func), '-.OUT..O' ,int2str(m4Step),
'.dat shft-.output /ascii'));

else
eval(['save ',int2str~input..func), '..OUT-.',int2str(m+Step),

'.dat shft..output /ascii'));
end

clear shft..output; %. Get ready for next pass.
end

%%%%%%%%%%%%%%%%%XY End loop %%%%%%%%%%%%%%%7.?

%% Save the contents of "output-.plot" in a MATLAB file
U and as an ascii file (optional).
Ye cd /home2/powers/1'Lfiles/ac-.prop/data %. SUN version

cd h:/ac-.prop/data %. PC version
evaj.(E'save ',OutFileName,' output..plot'])
evai(C (save ',OutFile-.Name,'.dat output-.plot /ascii']);

%% Display output view #1.
U figure; meshCT,X,abs(output-.plot)); titleC'IODUTPUTI');
%% axis( [ T(1 T(slices) X(1 X(base) ..
%% min( [ 0 niin(min(abs(output..plot))))) .

U max(max(abs(output-plot))) ))
U xlabel('time Cs)); ylabel('y (cm)'); zlabel('abs(output)');
HX view(52.S,30);

U Save output figure as eps file.
%* cd /home2/powers/M-files/ac-.prop/data %. SUN version

cd h:/ac..prop/data %. PC version
'As dispC' '); disp(ISaving output figure as EPS file . '..); disp('')

7.s eval(['print -deps -epsi ',naine,'-.outI-bI,int2str(base),
'As '.-d', int2str(d)]);

%% Create a different view of output
%*e figure; meshCT,X,abs(output-.plot)); title('IOUTPUTI');
'As axis( [ T(1) T(slices) X(1 X(base) ..
'As min( [ 0 min(min(abs(output-.plot)))))
7.s max~max~abs(output-.plot))) ])
'A* xlabelC'time Cs)); ylabel('y (cm)'); zlabel('abs(output)');

U Save second output figure as eps file.
'As disp(' '); disp('Saving figure as EPSF file....'); disp('')
7.s eval(C'print -deps -epsi '.name,'-.out2_.b',int2str(base), '-j',

45



%* int2str(d)]);

e1ap~ed-time a toc/60 % Stop timer; display elapsed time.

dispC 'uinutes')

46



Appendix D

Source Code for Input excitations

The following source code is for the input excitation choices given to the user in ACPROP.
Each is written as a MATLAB function and can be used independently of ACFIL or
AC2ROP. The input excitations are the uniform square (TABLE(w, base)), the uniform
circle (CRCLE(d, base)), the circularly truncated Gaussian ( CRCGA US(sigma, d, base)), and
the circularly truncated Bessel (CRCBES(a,d, base)) where w is the width of the square, d
is the diameter of the circle, a is the standard deviation of the Gaussian distribution, a is
a scaling factor, and base is the size of the base array.

TABLE.M SOURCE CODE

function Y = table(w,base)
% TABLE.M: Y - table(w,base)
%Program for generating a uniform square excitation function.
% December 1992 William H. Reid
%. Based on TABLE.M by JG Upton

%. w is the WIDTH of the table. (ODD integer)
% base is the WIDTH of the square base. (EVEN integer)
% Example: z = table(33,64);

% Check that w is an odd integer.
if rem(w,2) < 0.1;
error('The width of the table must be an ODD integer.');
else;
end;

%h Check that base is an even integer.
if rem(base,2) - 0.0;
error('The width of the square base must be an EVEN integer.');

47



else;
end;

NO a (base/2)÷1; % NO is the base array's center.

wO - ceil(v/2); X wO is the mid--point of the table.

Y = zeros(base); % Initialize matrices to reduce

temp - zeros(NO-1); % processing time.

temp(l:O,Ol:vO) a ones(wO); % Set amplitude to one.

% Generate the entire base x base input function array.
Y(baseO:base,baseO:base) a temp;
Y(2:base0,baseO:base) a rot90(temp);
Y(2:NO,2:NO) - rot90(temp,2);
Y(NO:base,2:NO) - rot90(temp.3);

% To test input distribution: mesh(Y)

CRCLE.M SOURCE CODE

function Y = crcle(dbase)
% CRCLE.M: Y = crcle(d,base)
% Program for generating uniform circular excitation functions
% December 1992 William H. Reid
% Based on CRCLE.M by JG Upton

% d is the DIAMETER of the circle. (ODD integer)
Y. base is the WIDTH of the square base. (EVEN integer)
% Example: z = crcle(33,64);

% Check that d is an odd integer.
if rem(d,2) < 0.1;
error('The diameter of crcle function must be an ODD integer.');
else;
end;

% Check that base is an even integer.
if rem(base,2) -= 0.0;
error('The width of the square base must be an EVEN integer.');

48



else;
end;

NO a (base/2)+1; X NO is the base array's center.
r - d/2; % r is the circle's radius.

% Initialize matrices to reduce processing time.
Y - zeros(base);
temp - zeros(NO-1);

% Set amplitude to one inside the circle's radius.
for m = 1:r+l;

for n = 1:r+l;
if sqrt((m-l)2 + (n-0)2) <= r;
temp(m,n) = 1;
end;

end;
end;

% Generate the entire base x base input function.
Y(baseO:base,baseO:base) = temp;
Y(2:baseO,baseO:base) = flipud(temp);
Y(2:NO,2:NO) = rot90(temp,2);
Y(NO:base,2:NO) = fliplr(temp);

% To test input function distribution: mesh(Y)

CRCGAUS.M SOURCE CODE

function Y = crcgaus(sigma,d,base)
% CRCGAUS.M: Y = crcgaus(sigma,d,base)
% Program for generating circular Gaussian excitation functions.
% December 1992 William H. Reid
% Based on CRCGAUS.M by JG Upton

% sigma is the STANDARD DEVIATION of the Gaussian function.
% d is the DIAMETER of circle. (ODD integer)
% base is the WIDTH of the square base. (EVEN integer)
% Example: z = crcgaus(12,33,64);

mu=O; %mu is the mean of the Gaussian function.

49



% Check that d is an odd integer.
if rem(d,2) < 0.1;
error('The diameter of circle function must be an ODD integer.');
else;
end;

Y% Check that base is an even integer.
if rem(base,2) -- 0.0;
error('The width of the square base must be an EVEN integer.');
else;
end;

NO a (base/2)+l; %. NO is center of the array.
r - d/2; % r is the radius of the truncating circle.

%A Initialize the matrices to reduce processing time.
Y = zeros(base);
temp a zeros(NO-1);

%. Compute the amplitude for the Gaussian distributed circle.
for m = i:(d+l)/2;

for n - 1:(d+1)/2;
x = sqrt((m-l)2+(n-1)-2);
if x <: r;
temp(m,n) = (1/(sqrt(2*pi)*sigma))*exp(-((x-mu)-2)/...

(2*(sigma'2)));
end;

end;
end;

%A Generate the entire base x base input array.
Y(baseO:basebaseO:base) - temp;
Y(2:baseO,baseO:base) = flipud(temp);
Y(2:NO,2:NO) a rot90(temp,2);
Y(NO:base,2:NO) = fliplr(temp);

Y = Y .J (max(max(Y))); % Normalize the Gaussian distribution to one.

% To test and view the input function: mesh(Y)

50



CRCBESS.M SOURCE CODE

function Y a crcbess(a.d.base)
SCRCBESS.M: Y a crcbess(a,d,base)

% Program for generating circular Bessel excitation functions.
% December 1992 William H. Reid
% Based on CRCBESS.M by JG Upton

Z a is the WIDTH SCALING FACTOR.
% d is the DIAMETER of the circle. (ODD integer)
% base is the WIDTH of the square base. (EVEN integer)
% Example: z - crcbess(1,33,64);

% Check that d is an odd integer.
if rem(d,2) < 0.1;

error('The diameter of the circle must be an ODD integer');
else;
end;

% Check that base is an even integer.
if rem(base,2) -= 0.0;

error('The width of the square base must be an EVEN integer');
else;
end;

NO = (base/2)+1; % NO is the center of the array.
r = d/2; % r is the radius of the circle.

Y = zeros(base); % Initialize the arrays to reduce
temp = zeros(NO-1); % processing time.

% Compute the Bessel distributed amplitude within the circle.
for m = 1:r+1;

for n = l:r+l;
x - sqrt((m-1) 2 + (n-1) 2);
if x <= r;
temp(m,n)=besseln(O,a*x);
end;

end;
end;

% Generate the entire base x base input array.

51



Y(NO:baseNO:babe) a tamp;
Y(2:NO,NO:base) aflipud~tomap);
Y(2:NO,2:NO) * rot90(tomp.2);
Y(NO:base.2:NO) a fliplr(temp);

% To teat and view the input function: mesh(Y)

52



Appendix E

Examples of Dicer
Representations of Output Data

This appendix contains more representations of the data from the Spyglass Dicer program.
The representations are discussed in the text on page 4.3.

Figures E.1 and E.2 show representations of data from a Table excitation that is 23
samples wide. Figures E.3 and E.4 show representations of data from a Circle excitation
that is 23 samples wide. Figures E.5 and E.6 show representations of data from a Circle
excitation that is 31 samples wide.

53



'M 127

y

TWM. (X4) 240

-.01142 zmatd.es6

Figure Ed1: Table output for d =23 samples. Dicer representation.

54



b-t ap n ot tabwe129.231

A 127

4X 1142 Ampktue 2.066

Fiaure E.2: Table output for d =23 samples. Alternativbe Dicer representation.

55



Prp otn pfism from ft129.23)

.. .... 127

00: Ampltd 2.0

Figure E.3: Circle output for d =23 samples. Dicer representation.

56



Propagtion aftm from icrc( 28,23

ILI

:7



FPro bonwof cit =128,3

.0.

.... ~ .......

..... ..... . 12
.Iz~z4 MX.

.. . .. . .. .

Time 240

Figure E.5: Circle output for d =31 samples. Dicer representation.

58



Propaation of drcie( 28,31

I ~ f~*~127

:041147 a ue2A145

Figure E.6: Circle output for d =31 samples. Alternative Dicer representation.

59



60



Bibliography

(1] J. Goodman, Introduction to Fourier Optics. New York: McGraw-Hill, 1968.

[2] D. Guyomar and J. Powers, "Transient fields radiated by curved surfaces - application to
focusing," J. Acoustical Society of America, vol. 76, no. 5, pp. 1564-1572, 1984.

[3] D. Guyomar and J. Powers, "A Fourier approach to diffraction of pulsed ultrasonic waves in
lossless media," in Proceedings of the 1985 IEEE Ultrasonics Symposium, (B. McAvoy, ed.),
(New York), pp. 692-695, IEEE Press, 1985.

[4] D. Guyomar and J. P. Powers, "Boundary effects on transient radiation fields from vibrating
surfaces," J. Acoustical Society of America, vol. 77, no. 3, pp. 907-915, 1985.

[5] D. Guyomar and J. Powers, "A Fourier approach to diffraction of pulsed ultrasonic waves in
lossless media," J. Acoustical Society of America, vol. 82, no. 1, pp. 354-359, 1987.

[6] D. Guyomar and J. Powers, "A transfer function model for propagation in homogeneous media,"
in International Symposium on Pattern Recognition and Acoustical Imaging, (Bellingham, WA),
pp. 253-257, SPIE Press, 1987.

[7] T. Merrill, A transfer function approach to scalar wave propagation in lossy and lossless media.
Master's thesis, Naval Postgraduate School, Monterey, California, March 1987.

[8] J. Upton, Microcomputer simulation of a Fourier approach to optical wave propagation. Master's
thesis, Naval Postgraduate School, Monterey, California, March 1992.

[9] W. R. Reid, Microcomputer simulation of a Fourier approach to ultrasonic wave propagation.
Master's thesis, Naval Postgraduate School, Monterey, California, December 1992.

[10] P. R. Stepanishen, "Transient radiation from pistons in an infinite planar baffle," J. Acoustical
Society of America, vol. 49, no. 5, pp. 1629-1637, 1971.

[11] P. R. Stepanishen, "Acoustic transients in the far-field of a baffled circular piston using the
impulse response approach," J. Of Sound and Vibration, vol. 32, no. 3, pp. 295-310, 1974.

[12] P. R. Stepanishen, "Acoustic transients from planar axisymmetric vibrators using the impulse
response method," J. Acoustical Society of America, vol. 70, no. 4, pp. 1176-1181, 1981.

(13] P. Stepanishen and G. Fisher, "Experimental verification of the impulse response method to
evaluate transient acoustic fields," J. Acoustical Society of America, vol. 69, no. 6, pp. 1610-
1627, 1981.

[14] G. Harris, "Review of transient field theory for a baffled planar transducer," J. Acoustical
Society of America, vol. 70, no. 1, pp. 10-20, 1981.

61



[15] D. Guyomar and J. Powers, "Propagation of transient acoustic waves in lossy and lossless
media," in Acoustical Imaging, Volume 14, (A, Berkhout, J. Ridder, and L. van der Wal, eds.),
pp. 521-531, New York: Plenum Press, 1985.

(16] MATLAB for MS-DOS Personal Computers, User's Guide. The MATHWORKS, Inc., Natick,
MA, 1990. User's guide.

[17] AXUM, Technical Graphics and Data Analysis, User's Manual. TriMetrix, Inc., Seattle, WA,
1989. User's manual.

[181 G. Tupholme, "Generation of acoustic pulses by baffled plane pistons," Mathematlka, vol. 16,
pp. 209-224, 1969.

(19] J. Lu and J. F. Greenleaf, "Experimental verification of nondiffracting X waves," IEEE 7T'ans.
on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 39, no. 3, pp. 441-446, 1992.

62



DISTRIBUTION LIST

No. Copies
1. Defense Technical Information Center 2

Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Department Chairman, Code EC
Naval Postgraduate School
Monterey, CA 93943-5004

4. Director of Research Administration, Code 81
Naval Postgraduate School
Monterey, CA 93943-5000

5. Professor John Powers, Code EC/Po 5
Naval Postgraduate School
833 Dyer Road, Room 437
Monterey, CA 93943-5121

6. Professor Mathaias Fink
Laboratoire Ondes et Acoustique
ESPCI
10 rue Vauquetin
75005 Paris
FRANCE

7. Professor Hua Lee
Department of Electrical & Computer Engineering
University of California
Santa Barbara CA 93106-9560

8. Dr. Sidney Leeman
Department of Medical Engineering & Physics
Dulwich Hospital
East Dulwich Grove
London SE22-8PT
United Kingdom


